Breast Cancer Res Treat. 2013 Jun;139(3):759-67. doi: 10.1007/s10549-013-2572-4.

Glück S., de Snoo F., Peeters J., Stork-Sloots L., Somlo G.

The aim of this study was to analyze the correlation between the pathologic complete response (pCR) rate after neoadjuvant chemotherapy and long-term outcome (distant metastases-free survival [DMFS]) in patients with early-stage breast cancer using BluePrint and MammaPrint molecular subtyping versus clinical subtyping using immunohistochemistry/fluorescence in situ hybridization (IHC/FISH) for the determination of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 (HER2). Data were analyzed from 437 patients in four neoadjuvant chemotherapy trials. BluePrint and MammaPrint outcomes were determined from 44K Agilent arrays, the I-SPY 1 data portal, or Affymetrix U133A arrays. The pCR rate differed substantially among BluePrint molecular subgroups: 6 % in Luminal A-type, 10 % in Luminal B-type, 47 % in HER2-type, and 37 % in Basal-type patients. In the Luminal A-type group (n = 90; including seven HER2-positive patients and eight triple-negative patients by IHC/FISH), the 5-year DMFS rate was 93 %. The pCR rate provided no prognostic information, suggesting these patients may not benefit from chemotherapy. Forty-three of 107 (40 %) HER2-positive patients were classified as Luminal-type by BluePrint and may have lower response rates to targeted therapy. Molecular subtyping identified 90 of 435 (21 %) patients as Luminal A-type (BluePrint Luminal-type/MammaPrint Low Risk) with excellent survival. The pCR rate provided no prognostic information. Molecular subtyping can improve the stratification of patients in the neoadjuvant setting: Luminal A-type (MammaPrint Low Risk) patients have a good prognosis with excellent survival and do not seem to benefit from chemotherapy. We observed marked benefit in response and DMFS to neoadjuvant treatment in patients subtyped as HER2-type and Basal-type. BluePrint with MammaPrint molecular subtyping helps to improve prognostic estimation and the choice of therapy versus IHC/FISH.

Read more: Gluck_2013_BCRT_Molecular Subtyping