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Abstract Classification of breast cancer into molecular
subtypes maybe important for the proper selection of

therapy, as tumors with seemingly similar histopatholo-

gical features can have strikingly different clinical out-
comes. Herein, we report the development of a molecular

subtyping profile (BluePrint), that enables rationalization in

patient selection for either chemotherapy or endocrine
therapy prescription. An 80-Gene Molecular Subtyping

Profile (BluePrint) was developed using 200 breast cancer

patient specimens and confirmed on four independent
validation cohorts (n = 784). Additionally, the profile was

tested as a predictor of chemotherapy response in 133

breast cancer patients, treated with T/FAC neoadjuvant
chemotherapy. BluePrint classification of a patient cohort

that was treated with neoadjuvant chemotherapy (n = 133)

shows improved distribution of pathological Complete
Response (pCR), among molecular subgroups compared

with local pathology: 56% of the patients had a pCR in the

Basal-type subgroup, 3% in the MammaPrint Low-risk,
Luminal-type subgroup, 11% in the MammaPrint High-

risk, Luminal-type subgroup, and 50% in the HER2-type

subgroup. The group of genes identifying Luminal-type
breast cancer is highly enriched for genes having an

Estrogen Receptor binding site proximal to the promoter-

region, suggesting that these genes are direct targets of the
Estrogen Receptor. Implementation of this profile may

improve the clinical management of breast cancer patients,

by enabling the selection of patients who are most likely to
benefit from either chemotherapy or from endocrine

therapy.
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Introduction

Recent studies have shown that the classification of breast
cancer into molecular subtypes is largely represented by the

estrogen receptor (ER), progesterone receptor (PR), and

HER2 status of the tumor: Basal-like breast cancers correlate
best with ER-negative, profile may improve the-negative

tumors [1, 2]; Luminal-like cancers are ER-positive [3],

while HER2-positive cancers have a high expression of the
HER2 gene [4]. Breast cancer can be classified into molec-

ular subtypes by simple hierarchical clustering of breast

tumors, according to their gene expression patterns [5].
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While this classification system has been developed without

consideration of patient survival rates, the different molec-
ular subtypes of breast cancer have different prognoses:

Luminal-like tumors have a more favorable outcome, and

basal-like, and HER2 subgroups are more sensitive to che-
motherapy [6–8]. To date, molecular classification has not

played a major role in treatment decisions. However, given

the role, that these subtypes have played in clinical trials (e.g.
PARP inhibitors or platinum agents and taxanes for triple-

negative cancers [9, 10]), they are likely to play an important
role in future clinical practice.

Concordance between the immunohistochemistry (IHC)

determined receptor status, and the molecular subtype
suggests that, molecular profiles represent oncogenic pro-

cesses that are driven by pathways in which ER, PR, and

HER2 play pivotal roles [2, 3, 11–13]. It is, therefore,
likely that the use of gene expression arrays will enable the

identification of previously unappreciated subtypes of

breast cancer that differ in clinical outcomes.
Molecular classification of breast tumors by IHC, or

through determination of gene activity by measuring

mRNA levels for single genes (e.g. TargetPrint), rely on
the presence of protein and mRNA, respectively, but nei-

ther assay determines whether the protein, or mRNA is

functional in making full length and functional receptor
proteins. As such, both methods have an inherent uncer-

tainty in predicting whether a tumor is truly positive for

functional ER, PR, or HER2 protein [14]. One method to
circumvent this problem is to develop gene signatures that

measure the expression of groups of genes that correlate

with the presence of the gene(s) of interest [15, 16].
Here we report the development of an 80-gene profile for the

classification of breast cancer into three molecular subtypes.

Materials and methods

Patient selection

A total of 1,212 patient specimens from 6 different studies
were analyzed (an overview of the different cohorts used in

this study can be found in Table 1). Cohort 1, described in

van de Vijver et al. [17], was used for the development
(cohort 1a) and initial validation (cohort 1b) of the

molecular subtyping profile. Cohort 1a samples (n = 200)

were selected for their concordance between classification
based on their ER, PR, and HER2 status by immunohis-

tochemistry (IHC), and by TargetPrint microarray based

single-gene readout (see below). Cohort 1b samples
(n = 95) had a discordance between IHC and TargetPrint

ER, PR, or HER2 determination.

Cohort 2 consisted of 274 early-stage breast cancer
samples from a consecutive series of patients seen at the

Netherlands Cancer Institute and treated with adjuvant

tamoxifen monotherapy [18]. Cohort 3(n = 100) was a
group of patients from the RASTER trial [19].

Additional validation of the profile was performed using

two publicly available data sets: cohort 4, n = 159, and
cohort 5, n = 251 (Table 1) [20, 21].

The last cohort (cohort 6, Table 1), consisting of pub-

licly available expression data from breast cancer patients
(n = 133), was used to determine the response to T/FAC

neoadjuvant chemotherapy for patients sub-divided by
molecular subtype [22].

Microarray gene expression data

Pre-processed and normalized Agilent 22 K dual-color

expression data from cohort 1 was downloaded from
http://www.rii.com, and duplicate dye-swap hybridizations

were combined into a single log-ratio expression value per

probe per sample. Samples from cohorts 2 and 3 were ana-
lyzed on Agilent arrays according to manufacturer’s proto-

cols. Expression data was quantified using Feature Extraction

software. Pre-processed and normalized Affymetrix U133A
and U133B gene expression data from cohorts 4 and 5 were

available at the NCBI Gene Expression Omnibus (GEO)

(http://www.ncbi.nlm.nih.gov/geo) with accession numbers
GSE1456 (cohort 4) and GSE3494 (cohort 5). Affymetrix data

for cohort 6 was publicly available and downloaded from

http://bioinformatics.mdanderson.org/pubdata.html. Microarray
expression datasets were imported into R/Bioconductor

software (www.bioconductor.org) for further analysis.

Affymetrix datasets were normalized by median scaling to
represent the expression ratio distributions of cohorts 1–3.

ER, PR, and HER2 status by IHC and TargetPrint

The ER, PR, and HER2 status of cohorts 1, 2, and 3 were

determined by IHC and by TargetPrint (Agendia; see
overview in Table 1) [14, 23]. Detailed procedures for

centrally performed IHC and TargetPrint of the samples

from cohorts 1–3 have been previously reported [14].
As shown in Table 1, locally determined IHC status of

ER was available for cohorts 5 and 6, PR status was

available for cohort 5, and HER2 status was available for
cohort 6. Receptor status of the publically available data-

sets was downloaded from their respective GEO websites.

Identification of an 80-gene Molecular Subtyping

Profile (BluePrint)

The 200 samples (cohort 1a) with concordant ER, PR, and

HER2 status were used for supervised training to identify gene

expression profiles specific for three molecular subtyping
classes: Basal-type (triple-negative) tumors, Luminal-type
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(hormone receptor-positive) tumors, and HER2-positive

breast tumors. Using a threefold cross validation (CV) pro-
cedure, we identified the genes that best discriminate between

the three molecular subtypes. Within each CV iteration, two-

sample Welch t-tests were performed on a randomly selected
set of 133 of the 200 training samples to score all genes for

their differential expression among the three classes. Genes

were ranked according to their absolute t-statistics and the
threefold CV procedure was repeated a hundred times. Next,

the 100 gene ranking scores were combined into a single
ranking per gene, and the minimal number of genes with

optimal performance was determined using a leave-one-out

CV on all 200 training samples. Optimal performance was
achieved with a total of 80 unique genes (Table 2).

Next, a nearest-centroid classification model was built

utilizing the 80-gene profile, in a fashion similar to that
described previously [15, 24, 25]. Cohort 1a was used to

establish a Basal-type centroid profile (based on 28 genes),

a Luminal-type profile (based on 58 genes), and a HER2-
type profile (based on 4 genes). For all additional samples

and for cohort 1a using a leave-one-out CV, a correlation

index was calculated between the sample’s 80-gene profile
and each of the three MSP centroids.

ChIP-seq analysis and intersections with the Luminal-
type gene signature

ERa ChIP-seq data from proliferating MCF-7 breast cancer
cells were used from a publicly available dataset [26]. The

transcription start sites of the Luminal-type gene set were
determined, after which, the presence of Estrogen Receptor

binding sites was analyzed within a window of ; 20 kb from

the transcription start site. The sequence track was visualized
using the UCSC genome browser (http://genome.ucsc.edu/).

Peak intensity was determined from the tag count.

The set of 58 Luminal genes was analyzed through the
use of Ingenuity Pathways Analysis (Ingenuity" Systems,

www.ingenuity.com). The genes were queried against the

Ingenuity Knowledge Base and interactions between the 58
Luminal genes and ER were identified.

Table 1 Overview and characteristics of the training and validation cohorts

1a 2 3b 4 5 6

Cohort #

Samples (n) 295 274 100 159 251 133

Array Agilent
22 k

Agilent
44 K

Agilent
44 K

Affymetrix
U133

Affymetrix
U133

Affymetrix
U133

Reference van de Vijver [17] Kok [18] Bueno-de-
Mesquita [19]

Pawitan [20] Miller [21] Hess [22]

Subsets* 1a 1b

Samples (n) 200 95

Purpose Training Validation Independent
validation

Independent
validation

in silico
validation

in silico
validation

in silico validation
chemo-response

MSP class

Hormone receptor-
positive (%)

60 74 78 49 67 60 62

Triple-negative (%) 16 16 8 16 17 30 20

HER2-positive (%) 24 11 14 35 16 10 18

TargetPrint

ER-positive (%) 77 80 80 71

PR positive (%) 72 43 47 61 NA NA NA

HER2 positive (%) 24 7 13 39

IHC (?CISH for HER2)

ER-positive (%) 73 78 84 68 85 62

PR positive (%) 72 49 46 49 NA 76 NA

HER2 positive (%) 24 13 13 38 NA 25

Note: Not all percentages sum to 100 because of rounding
a Cohort 1 was divided into training cohort 1a that consisted of samples with concordant TargetPrint and IHC based receptor classification, and
into validation cohort 1b that consisted of samples with a discordance between IHC and TargetPrint based classification
b Samples within cohort 3 have been selected to include approximately two-thirds hormone positive samples and one-third HER2 positive
samples
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Results

An 80-gene Molecular Subtyping Profile

We used the TargetPrint assay [14] to quantify ER, PR, and

HER2 mRNA levels in a training cohort of 295 breast
cancer samples. We then used IHC/CISH to measure ER,

PR, and HER2 protein levels in the same 295 samples for

the same three receptors. Employing the 200 samples with
concordant ER, PR, and HER2 status by IHC and Target-

Print mRNA readout (Table 1), a Molecular Subtyping

Profile (MSP) was developed using a supervised training
method. By using only concordant samples, we sought to

capture ER, PR, or HER2 regulated processes more reliably

and robustly as compared with the use of each assay indi-
vidually. Gene expression profiles were identified specific

for three molecular subtypes: Basal-type (triple-negative)

tumors, Luminal-type (hormone receptor-positive) tumors,

and HER2-type (HER2-positive) breast tumors. Using a

threefold Cross Validation (CV) procedure, we identified
80 genes that best discriminated the three molecular sub-

types (Table 2; Fig. 1a, see ‘‘Materials and methods’’ for

details).
Testing of the profile on the 95 samples from cohort 1b

(discordant for ER, PR, and HER2 by IHC/CISH and

TargetPrint, details in Table 1 and ‘‘Materials and meth-
ods’’) showed that, the Molecular Subtyping Profile was

more concordant with the TargetPrint status than with ER,

PR, and HER2 status as determined by IHC. For example,
of the nine IHC/CISH HER2-positive samples, only one

was classified as MSP HER2-type, compared with all (7/7)

of the TargetPrint HER2-positive samples. Similarly, only
three of the seven IHC based triple-negative samples were

classified as Basal-type by MSP, while eleven of the

Table 2 Overview of reporter genes for Basal-like, Luminal-like, and HER2-like molecular subgroups

Luminal Luminal, cont. Basal HER2

NM_000663 ABAT NM_006864 LILRB3 NM_145186 ABCC11 NM_004448 ERBB2*

NM_001609 ACADSB NM_015541 LRIG1 NM_001609 ACADSB NM_001030002 GRB7*

NM_024722 ACBD4 NM_005375 MYB NM_002285 AFF3 NM_033419 PERLD1

NM_001124 ADM NM_000662 NAT1* NM_006408 AGR2 NM_153694 SYCP3

NM_002285 AFF3 NM_000909 NPY1R NM_000044 AR

NM_000633 BCL2* NM_007083 NUDT6 NM_206925 CA12

NM_003766 BECN1 NM_017830 OCIAD1 NM_144575 CAPN13

NM_000060 BTD NM_032521 PARD6B NM_031942 CDCA7

NM_003939 BTRC NM_000926 PGR* NM_001267 CHAD

NM_206925 CA12 NM_203453 PPAPDC2 NM_005794 DHRS2

NM_207310 CCDC74B NM_020820 PREX1 NM_000125 ESR1

NM_004358 CDC25B NM_032918 RERG NM_004496 FOXA1*

NM_014246 CELSR1 NM_173079 RUNDC1 NM_001453 FOXC1*

NM_001408 CELSR2 NM_002964 S100A8 NM_001002295 GATA3

NM_001267 CHAD NM_020974 SCUBE2 NM_014668 GREB1

NM_016138 COQ7 NM_003108 SOX11 NM_019600 KIAA1370

NM_003462 DNALI1 NM_145006 SUSD3 NM_177433 MAGED2

NM_021814 ELOVL5 NM_153365 TAPT1 NM_024101 MLPH*

NM_000125 ESR1* NM_015130 TBC1D9 NM_002444 MSN

NM_001002295 GATA3 NM_024549 TCTN1 NM_018728 MYO5C

NM_017786 GOLSYN NM_024817 THSD4 NM_033419 PERLD1

NM_014668 GREB1 NM_144686 TMC4 NM_175887 PRR15

NM_024827 HDAC11 NM_032376 TMEM101 NM_138393 REEP6

NM_002115 HK3 NM_021103 TMSB10 NM_178568 RTN4RL1

NM_000191 HMGCL NM_198485 TPRG1 NM_004694 SLC16A6

NM_002184 IL6ST NM_152376 UBXD3 NM_015417 SPEF1

NM_005544 IRS1 NM_018478 DBNDD2 NM_015130 TBC1D9

NM_033426 KIAA1737 NM_006113 VAV3 NM_024817 THSD4

NM_005733 KIF20A NM_005080 XBP1

Genes indicated in bold are also present in the intrinsic gene set as originally reported by Perou et al. [5]; genes that also have an asterisk (*) are
genes that are also present in the PAM50 gene set [28]
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thirteen TargetPrint triple-negative samples showed a MSP

Basal-type classification.

Confirmation of MSP in independent patient cohorts

Next, the classification of breast cancer samples into three

molecular subtypes using the developed 80-gene MSP was

performed using two independent patient cohorts with a
total of 374 patient specimens (cohorts 2–3, Table 1). Of

the 374 patients, 39 (10%) were classified as Basal-type,

263 (71%) were classified as Luminal-type, and 64 (19%)
as HER2-type (Table 1; Fig. 1b).

Statistical analysis to validate the presence of the three

MSP classes in the independent cohorts was performed using
the in-group proportion (IGP) statistic, which is defined to be

the proportion of samples in a group, whose nearest neigh-
bors are also in the same group, and can be considered as a

measure of the robustness and reproducibility of the MSP

profile in independent series [27]. The MSP classification of

all the three subtypes was highly preserved in cohorts 2 and 3,
respectively, with an IGP of 0.98 and 0.88 for Luminal-type,

0.87 and 0.94 for Basal-type, and 0.78 and 0.89 for HER2-

type classifications (Table 3).
We also confirmed the MSP on microarray data gener-

ated by other investigators using Affymetrix arrays (cohort

4–5, Table 1). All 80 genes could be matched to the
Affymetrix data using gene symbol or RefSeq annotation.

Despite the use of different platforms, and the fact that the

data had been generated by other investigators, our in silico
analysis shows similar MSP outcome distributions as

observed in both the training and in-house independent

cohorts with 73 out of 410 (18%) samples classified as
Basal-type, 244 (60%) as Luminal-type, and 93 (23%) as

HER2-type (Table 1). Calculated IGP scores confirmed the
reproducibility of the MSP classes on the two in-silico data

sets (Table 3).

A B

Fig. 1 Molecular Subtyping Profile (MSP) of training and validation
cohorts. 3D-scatterplots are shown for a cohorts 1a (solid circles) and
1b (open circles), and for b validation cohorts 2 (circles) and 3
(triangles). The x, y, and z-axis, respectively, show the HER2-positive

type, Basal-type, and Luminal-type scores of all samples. Samples are
colored according to their MSP outcome, in which, Luminal-types are
shown in blue, Basal-types in red, and Her2-types in orange

Table 3 In group proportion statistics (IGP) for the MSP classes across the independent cohorts.

MSP class In-group proportion (IGP)

Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

Hormone receptor-positive (Luminal-type) 0.98 0.88 0.92 0.91 0.91

Triple-negative (Basal-type) 0.87 0.94 0.92 0.68 0.96

HER2-positive (HER2-type) 0.78 0.89 0.56 0.68 0.75

IGP is defined as the proportion of samples in a group, whose nearest neighbors are also in the same group, and can be considered as a
measurement for the robustness and reproducibility of identified cluster/classes across independent data sets [28]

Note: An ideal cohort has an IGP value of 1.0
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Comprehensive breast cancer classification

by MammaPrint and MSP

The 295 samples from cohort 1 have previously been

stratified by risk of development of distant metastasis by

MammaPrint [17]. Here we have combined the Mamma-
Print based prognosis, and the developed MSP to subtype

the breast cancer samples into 4 groups: MammaPrint

Low-risk/Luminal-type, MammaPrint High-risk/Luminal-
type, Basal-type, and HER2-positive. The great majority

(92%) of MammaPrint Low-risk samples were Luminal-

type by MSP, while the High-risk samples were more
equally distributed across the MSP classes with 46%

Luminal-type, 26% Basal-type, and 28% HER2-type. The

combined MammaPrint and MSP classification was con-
firmed in cohort 6, for which, chemotherapy responsive-

ness data was available (see below). Eighty-six percent of

the Low-risk samples were Luminal-type compared with
53% of the High-risk samples.

Comparison of the 80-gene profile
and the ‘‘intrinsic gene set’’

Molecular classification of breast cancer by the so-called
‘‘intrinsic gene set’’, as first identified by Perou et al., was

based on hierarchical clustering without consideration of

ER, PR, and/or HER2-associated tumor biology [5]. This
set has been reduced in number and is currently available

as ‘‘PAM50’’ [28]. In contrast, the BluePrint MSP has been

developed with ER, PR, and HER2 status as a starting
point. The 80 BluePrint genes and their contribution to

distinguishing the different subtypes is provided in

Table 2, in which, we also indicated the overlapping genes
with the intrinsic gene set and the PAM50 gene set.

Figure 2 is a Venn diagram directly comparing the genes in

the BluePrint MSP, the original intrinsic gene set, and the
genes present in the PAM50 profile.

Direct comparison between the two methods is possible,

as cohort 1 samples have also been assessed using the
‘‘intrinsic gene set’’ (Table 4) [29]. Despite the different

strategies, classification by the MSP 80-gene profile is in

agreement with the classification based on the ‘‘intrinsic
gene set’’ with an overall concordance of 92%. The

‘‘intrinsic gene set’’, Normal-like group was disregarded

for this analysis, since, it is like an artifact of having a high
percentage of normal breast cells in the specimens of the

original study [28, 30, 31].
Agreement analysis with inclusion of the Normal-like

class resulted in a concordance of 83%. Of note, within this

analysis, we underestimated the concordance with Perou
classification as the MSP has no Normal-like counterpart,

and consequently, all Normal-likes are discordant between

both methods. The MSP classified 2 out of the 29 ‘‘Normal-
like samples’’ as Basal-type, 23 as Luminal-type, and 4 as

HER2-type (Table 4).

Ten year Distant Metastasis Free Survival (DMFS) of
patients in cohort 1, demonstrated a 4% higher survival for

patients with BluePrint Luminal-type/MammaPrint Low-

risk (86%, 95%CI, and 79–93%) compared with patients
having Luminal A-like with the intrinsic gene set (82%,

95%CI, and 75–89%); whereas, the Luminal-type/Mam-

maPrint High-Risk patients had a similar survival (51%,
95%CI, and 40–65%) compared with the Luminal B-like

patients (49%, 95%CI, and 36–67%). Interestingly, inves-

tigation of five year DMFS indicated a 95% survival
(95%CI, 91–99%) for BluePrint Luminal-type/Mamma-

Print Low-risk patients compared with 89% (95%CI,

83–95%) for Luminal A-like patients. Due to relatively
small datasets, these differences do not reach statistical

significance. The DMFS for patients classified by BluePrint

as HER2-positive (60%, 95%CI, and 48–74%), or as triple-
negative (61%, 95%CI, and 46–80%) were also equal

compared with the DMFS rates for the patients classified

according to the intrinsic gene set: HER2-likes (58%,
95%CI, and 43–78%) and basal-like (60%, 95%CI, and

47–78%).

Estrogen receptor signaling identifies Luminal-type

breast cancer

We have previously reported the genome-wide mapping of

Estrogen Receptor alpha binding sites in MCF-7 breast

cancer cells using ChIP-seq [26]. The transcription start
sites of the 58 genes in the gene set that identifies the

Luminal-type subgroup were determined, after which, the

presence of Estrogen Receptor binding sites was analyzed
within a window of ; 20 kb from the transcription start

site. A 20 kb window was previously established as an

optimal distance to capture regulatory regions [32]. The
sequence track was visualized using the UCSC genome

Fig. 2 Comparison of genes in the three different subtyping profiles;
BluePrint, intrinsic gene set, and PAM50. Figure depicting a Venn
diagram directly comparing the genes in the BluePrint MSP, the
original intrinsic gene set, and the genes present in the PAM50 profile
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browser (http://genome.ucsc.edu/). Peak intensity was

determined from the tag count. Figure 3a shows an

example of a gene (SUSD3) which has multiple Estrogen
Receptor a binding sites within 20 kb of its transcription

start site (black bar) and one gene (TPRG1) lacking ERa
binding sites in its promoter. We then performed the same
analysis for all 58 genes that together identify Luminal-

type breast tumors (Fig. 3b). We found that, 32 out of the
58 Luminal profile genes have ERa binding sites adjacent

to the transcription start sites (55%), whereas, only *28%

of all RefSeq genes (*24,000) have ERa binding sites
within the same distance window. This result indicates that,

the genes that identify Luminal-type breast cancer are

significantly enriched for having ERa binding sites in close
proximity to its transcription start site (P = 1.2e-5), and

are likely to be regulated by Estrogen Receptor a activity.

Figure 3c depicts the interaction network between the 58
Luminal genes and Estrogen Receptor. Seventeen of these

genes are proven to have interactions with ER using

Ingenuity Pathway Analysis.
We conclude that the Luminal-type subgroup of breast

cancer most likely represents tumors that depend on

Estrogen Receptor signaling and, hence, are likely to
respond to endocrine therapy.

Chemotherapy response

Publicly available microarray expression data with full clini-

cal history from a neo-adjuvant clinical study, allowed in
silico analysis of the 80-gene MSP as a predictor of patho-

logical Complete Response (pCR) [22]. MSP readout was

determined on tumor samples from 133 breast cancer patients
who were treated with neo-adjuvant T/FAC chemotherapy

(cohort 6, Table 1). Within this cohort, 20% (n = 27) were

classified as Basal-type, 62% (n = 82) as Luminal-type, and
18% (n = 24) as HER2-type, with an IGP of 0.96 for Basal-

type, 0.91 for Luminal-type, and 0.75 for HER2-type

(Table 3). The overall pCR of this patient cohort was 26%,
and differed substantially among the subgroups (Fig. 4).

PCR was observed in 9% of all Luminal-type samples

and, importantly, only in 3% of MammaPrint Low-Risk/

Luminal-type and 11% in MammaPrint High-Risk/Luminal-

type, in 50% of the HER2-type samples, and in 56% of the

Basal-type samples. These numbers change when the samples
are stratified according to the intrinsic gene set, and when

stratified with local IHC/FISH assessment. The combined

use of MammaPrint with BluePrint improves the distribution
of pCR rates for the different molecular subgroups, respec-

tively lower in the Luminal A group and higher pCR rates in
the Basal and HER2 group (Table 5).

Discussion

In this article, we describe the development and validation
of an 80-gene Molecular Subtyping Profile (MSP) named

‘‘BluePrint’’ that classifies breast cancer patients into

Basal-type, Luminal-type, and HER2-type subgroups. The
profile was developed in a supervised training method,

using samples with concordant ER, PR, and HER2 status

by IHC and single-gene readout ensuring the capture of
ER/PR/HER2-regulated processes, and development of a

more reliable and robust test, than a single-gene read-out

by IHC or mRNA measurement. This rational based
approach is different from previously defined subtypes

based on hierarchical clustering [5]. The classification was

validated on gene expression data from 917 samples, in
which, the separation of the three subgroups was clearly

maintained, indicating the robustness of the profile and the

reproducible differences among the subgroups.
Sub-stratification of the Luminal-like patients into A and

B subtypes, is thought to be based on the expression of

markers of tumor grade and/or proliferation, such as Ki67
[11, 12, 33]. The classification into Luminal A and B

appears to have prognostic implications, and maybe useful

in determining the need for chemotherapy, however, more
accepted characteristics for therapeutic decision making

including histological grade, proliferation, nodal status,

peritumoral vascular invasion, tumor size, and risk strati-
fication by multi-gene assays (such as the 70-gene Mam-

maPrint or the 21-gene Oncotype assay) are preferred [34].

In the current study, sub-stratification of the Luminal-type

Table 4 Comparison of MSP with classification using the ‘‘intrinsic gene set’’ on cohort 1

Molecular subtyping by MSP Clustering of patients by ‘‘intrinsic gene set’’

Luminal A Luminal B Basal-like Her2-like ‘‘Normal-like’’ Total

Low-risk MammaPrint Luminal-type 83 9 0 0 14 106

High-risk MammaPrint Luminal-type 34 39 2 0 9 84

Basal-type 0 0 44 0 2 46

HER2-type 6 7 7 35 4 59

Total 123 55 53 35 29 295

The number in bold indicates the number of samples for which the classification by both methods is in agreement
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Fig. 3 Interaction network between the Luminal genes and the
Estrogen Receptor. Luminal signature genes show enrichment for
Estrogen Receptor binding sites close to their transcription start sites.
Estrogen Receptor ChIP-seq analyses were performed from a publicly
available dataset of proliferating MCF7 breast cancer cells, and the
Estrogen Receptor binding site occupancy was determined within a
20 kb distance from the transcription start site of a gene from the
Luminal signature. a Shows an example of the presence (top panel) or
absence (bottom panel) of an Estrogen Receptor binding site within a

20 kb distance from the transcription start site. Estrogen Receptor
binding site presence was determined for all genes in the Luminal
signature and visualized in a heatmap (b). c Depicts the interaction
network between the Luminal genes and Estrogen Receptor. Seven-
teen of the Luminal genes are proven to have interactions with ER. A
dashed line indicates an indirect interaction and a solid line indicates
direct interactions. Red/Blue indicates that the gene is up/down-
regulated in the Luminal-type subgroup. The shape of the gene
indicates the type of the protein encoded by this gene
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group by MammaPrint (where MammaPrint Low-Risk/

Luminal-type is equivalent to Luminal-like A and Mam-
maPrint High-Risk/Luminal-like is equivalent to Luminal-

like B) indicated a (non significant) improved Hazard Ratio

for the combined use of MammaPrint and MSP compared
with the sub-stratification of the ‘‘intrinsic gene set’’ into A

and B subtypes.

PAM50, another profile for Molecular Subtyping, has
recently been developed from the 4 different intrinsic gene

sets that have followed since the first article on intrinsic
subtyping was published [28]. This 50-gene profile classi-

fies patients into Basal-like, HER2-enriched, Luminal A,

and Luminal B subgroups. This profile has been developed
specifically using qRT-PCR with a risk algorithm. The

classification of patients into Luminal, HER2, and Basal

subgroups by PAM50 or BluePrint is expected to have
great similarity, given that the concordance with the ori-

ginal intrinsic gene set is [90%.

There is currently no ‘‘gold standard’’ for molecular
subtyping of breast cancer. It is, therefore, unclear which

method is best at classifying the Luminal, HER2, or Basal-

like subtypes. For instance, although several investigators
have used the term ‘‘triple- negative’’ and ‘‘basal-like’’

interchangeably, it should be noted that, these subtypes are

not completely concordant, and that additional markers are
needed to separate them [35, 36]. With standardization still

pending, the 80-gene MSP Basal-type subgroup has been

developed using a rational based model with concordant
negative IHC/TargetPrint-assessed samples for ER, PR,

and HER2.
Pathological Complete Response (pCR) in the neoad-

juvant setting can be used as a surrogate measure of

response to chemotherapy, and is associated with excellent
long-term cancer-free survival [37–39]. We observe

improved risk distribution, in response to neo-adjuvant

treatment by Molecular Subtype as defined by our 80-gene
profile compared with local pathology; with a pCR of 3%

in the MammaPrint Low-Risk/Luminal-type samples, 11%

in the MammaPrint High-Risk/Luminal-type samples,
50% in the HER2-type samples, and 56% in the Basal-type

samples [2, 40].

We show here that, Luminal breast tumors are identified
by a set of genes that is highly enriched for genes having

ERa binding sites in close proximity to their transcription

start sites. It is, therefore, very likely that these tumors are
characterized by active ER signaling. Such active ER sig-

naling is typical for tumors having a functional and active

ER, which in turn suggests that such tumors respond to
endocrine therapies. Thus, our data suggest that, Luminal-

type breast tumors are most likely to respond to endocrine

therapy, but not chemotherapy, whereas, Basal-type and
HER2 type tumors are likely to respond better to chemo-

therapy (and HER2-targeted therapy for the HER2 types).

The clinical utility of molecular subtyping of breast
tumors using expression profiling has remained unclear in

part, because standardized methodology for classification

has been lacking [41]. Medical practice has adopted the use

Fig. 4 Chemotherapy response differs among the MSP classes.
Pathological Complete Response (pCR) rates are shown for cohort
6 Low-risk Luminal-, High-risk Luminal-, Basal-, and HER2-type
breast cancers. Error bars indicate the 95%CI for the corresponding
pCR proportions

Table 5 Comparison of chemotherapy response in Hess et al. [22]

Local pathology Intrinsic Subtyping BluePrint

n (%) pCR (%) n (%) pCR (%) n (%) pCR (%)

Luminal (ER ?/HER2-) 67 (50%) 7 30 (23%) 6 NA

Luminal A (Low-risk Luminal-type) NA NAa 29 (22%) 3

Luminal B (High-risk Luminal-type) NA NAa 53 (40%) 11

Basal (ER-/HER2-) 32 (24%) 47 22 (17% 45 27 (20%) 56

HER2 (HER2 ?) 33 (25%) 39 20 (15%) 45 24 (18%) 50

Normal-like NA 10 (8%) 0 NA

Not assessed NA 51 (38%) 25 NA

Subgroups are classified according to local pathological assessment, intrinsic subtyping, and BluePrint

Note: not all percentages sum to 100 because of rounding
a Hess et al. did not stratify the Luminal group into the subgroups A and B
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of validated multi-gene assays, such as the 70-gene Mam-

maPrint and 21-gene Oncotype profiles, for use in con-
junction with standard clinico-pathologic risk assessment,

in determining a role for adjuvant chemotherapy. The MSP

profile described here will help in further establishment of a
clinical correlation between molecular subtyping and

treatment responses, especially in combination with Mam-

maPrint; one biopsy sample is able to provide multiple
answers. The addition of the BluePrint profile to the

MammaPrint profile using the same platform indicates, how
versatile the platform is, and how these two tests are merely

a hint of the future possibilities provided by this technology;

a multitude of profiles on one single biopsy that can be used
for the optimal treatment decision. Moreover, the rational

based method of BluePrint development, and the high

percentage of genes in the profile with Estrogen Receptor
binding sites in their promoters, proving our profile mea-

sures functionality of the estrogen receptor, argues that the

BluePrint 80 gene profile is suited for medical practice,
especially in clinical trial setting.

The notion that certain drugs may only be effective for

patients of particular subtypes has already led to clinical
trials evaluating drug responses in molecularly based sub-

groups. The outcome of these trials and future implemen-

tation of this knowledge may improve the clinical
management of breast cancer patients, by enabling the

physician to decide who is most likely to benefit from

which chemotherapy before surgery. Further, it may sup-
plement information already available from validated

multi-gene assays, in helping the clinician decide on the

best treatment for each patient.
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