

ImPrint immune signature in 10,000 early-stage breast cancer patients from the real-world FLEX database

Adam Brufsky¹, Midas Kuilman², Rita Mukhtar³, Denise M. Wolf³, Christina Yau³, Joyce O'Shaughnessy⁴, Cathy Graham⁵, VK Gadi⁶, Pat Whitworth⁷, Alex Hindenburg⁸, Ian Grady⁹, Gordon Srkalovic¹⁰, Kent Hoskins⁶, Ajay Dhakal¹¹, Cynthia Ma¹², Natasha Hunter¹³, Jennifer A. Crozier¹⁴, Blanche Mavromatis¹⁵, Lorenza Mittempergher², Christine Finn¹⁶, Patricia Dauer¹⁶, Andrea Menicucci¹⁶, Bas van der Baan², William Audeh¹⁶, and Laura Esserman³

¹University of Pittsburgh Medical Center, Pittsburgh, PA; ²Agendia, NV, Amsterdam, Netherlands; ³University, Atlanta, GA; ⁶University of Illinois Cancer Center, Chicago, IL; ⁷Nashville Breast Center, Nashville, TN; ⁸New York University Langone, New York, NY; ⁹North Valley Breast Clinic, Redding, CA; ¹⁰Sparrow Hospital System, Lansing, MI; ¹¹University of Rochester, NY; ¹² Washington University, St. Louis, MO; ¹³Seattle Cancer Care Alliance, Seattle, WA; ¹⁴Baptist MD Anderson Cancer Center, Jacksonville, FL; ¹⁵University of Pittsburg Western Maryland, Cumberland, MD; ¹⁶Agendia Inc., Irvine, CA

Background

- Immune checkpoint inhibitors (ICIs) in combination with chemotherapy have demonstrated an improvement of pathologic complete response (pCR) in the I-SPY2 TRIAL¹⁻⁴.
- Not all patients benefit from immune checkpoint blockade and these new agents come with additional financial burden and may come with significant long-lasting side effects such as adrenal insufficiency. It is imperative to better understand who benefits most from ICIs.
- Response Predictive Subtypes (RPS) were developed in the I-SPY2 TRIAL using pre-treatment expression data from 987 MammaPrint High Risk patients, where 39% of HR+/HER2tumors and 63% of TNBC (triple negative breast cancers) were identified as immune sensitive¹.
- In I-SPY2.2, RPS tumor classification uses ImPrint, a 53-gene signature that has been independently validated to predict the likelihood of a pCR with PD-1/PD-L1 ICIs with high sensitivity and specificity⁵.

Objective

Using a real-world database of 10,000 patients enrolled in the FLEX trial, which includes patients who are largely underrepresented in most clinical trials, we identified patients with immune sensitivity (**ImPrint+**).

Methods

Patients: FLEX (NCT03053193) is an ongoing registry trial of patients with early-stage breast cancer who receive MammaPrint (**MP**) testing, with or without BluePrint (**BP**) molecular subtyping, and consent to clinically annotated full genome data collection.

Molecular Classification: MP is a 70-gene risk of distant metastasis signature that classifies patients as Low Risk or High Risk⁶. BP, an 80-gene molecular subtyping signature, categorizes patients' tumors as Luminal-, HER2- or Basal-Type⁷.

Statistical analysis: Of those with available clinical data, differences in the distribution of ImPrint+ and ImPrint- results by clinical factors or genomics were assessed using a Chi-square test. A proportional z-test was used to assess differences in proportions.

Table 1. Imm

Age
≤ 50 years
> 50 years
Menopausal s
Pre-/peri-
Post-
Race/ethnicity
AAPI
Black/Africa
American
Latin-X
White
Other
Tumor stage,
cT0/Tis
cT1
cT2
cT3
cT4
Nodal stage, c
cN0
<u>cN1</u>
cN2
cN3
Clinical subty
HR+/HER2-
HR+/HER2+
HR-/HER2+
TNBC
MammaPrint
Low Risk
High Risk
BluePrint
Luminal-Typ
HER2-Type
Basal-Type
Results represent
AAPI, Asian Ameri

	ImPrint+	ImPrint-	Total	Significance	genomic MP risk	(middle) and immur
				olginicalico		gorized as Low Risk (Lo
	265 (14.4)	1572 (85.6)	1837 (22.7)	p < 0.001	IVIAIIIIII IS Cale	YUNZEU AS LUW RISK (LU
	480 (7.7)	5771 (92.3)	6251 (77.3)			
tatu	S				Clinical Subtype	MammaPrint
	217 (13.2)	1425 (86.8)	1642 (21.5)	p < 0.001		
	490 (8.2)	5506 (91.8)	5996 (78.5)			Low
/						55.2%
	22 (11.3)	173 (88.7)	195 (2.5)	p < 0.001		
n	141 (18.8)	609 (81.2)	750 (9.8)		HR+/HER2- (n=6417)	
	54 (16.2)	280 (83.8)	334 (4.3)			
	477 (7.5)	5897 (92.5)	6374 (82.9)			High 44.8%
	2 (5.4)	35 (94.6)	37 (0.5)			44.8%
сТ			r			
	0	7 (100)	7 (0.1)			
	281 (6.6)	3979 (93.4)	4260 (64.0)			Low
	256 (12.6)	1775 (87.4)	2031 (30.5)	p < 0.001	HR-/HER2+ (n=129)	13.0%
	48 (16.7)	240 (83.3)	288 (4.3)		(11 120)	
	13 (19.4)	54 (80.6)	67 (1.0)			
:N						
	409 (8.3)	4496 (91.7)	4905 (77.3)	p < 0.001		High
	138 (10.6)	1161 (89.4)	1299 (20.5)		HR+/HER2+	High 87.0%
	23 (23.7)	74 (76.3)	97 (1.5)		(n=427)	
	11 (25.6)	32 (74.4)	43 (0.7)			
ре						
	321 (5.0)	6079 (95.0)	6400 (86.6)			
-	54 (12.7)	373 (87.3)	427 (5.8)	p < 0.001		Low
	50 (38.8)	79 (61.2)	129 (1.8)			4.2%
	257 (59.4)	176 (40.6)	433 (5.9)			
	12 (0.3)	4508 (99.7)	4520 (48.8)	p < 0.001		
	840 (17.7)	3908 (82.3)	4748 (51.2)		TNBC	High
e	191 (2.5)	7507 (97.5)	8771 (86.8)		(n=435)	High 95.8%
	75 (21.1)	280 (78.9)	377 (4.0)	p < 0.001		
	564 (69.5)	248 (30.5)	873 (9.2)			
	00- (08.0)		010 (0.2)			

Conclusions

In this study, most patients who are predicted to benefit from ICIs have MP High Risk or BP Basal-Type tumors. ✤ 321 (5.0%) patients with HR+/HER2- tumors were ImPrint+.

Similar frequencies of immune sensitivity were observed in FLEX as in I-SPY2¹⁻³ when comparing MP High Risk patients with clinically high risk characteristics.

* Younger women and patients of Black or Latin race/ethnicity who more often have more aggressive tumors^{8,9} also have higher proportions of ImPrint+ tumors.

* This large, real-world dataset enables the identification of populations who may benefit from immune therapy beyond those typically included in clinical trials and supports the testing of checkpoint inhibitors in the immune-positive subtype.

Results

✤ Here, we utilized FLEX to evaluate a clinically relev genomic signature, which may be further optimized in future by subtype and used to inform treatment decisions.

This first look at immune sensitivity with ImPrint in the 10,0 patient FLEX database generates preliminary data hypotheses that will be explored in future FLEX substudie and this analysis was only possible using the FLEX genome data.

	References: 1. Wolf D, <i>et al</i> . Cancer Cell, 2022. 2. Pusztai L
vant the	<i>et al</i> . Cancer Cell, 2021. 3. Nanda R, <i>et al</i> . JAMA Oncol, 2020. 4. Schmid P, <i>et al.</i> NEJM, 2020. 5. Mittempergher L, <i>et al.</i> ASCO abstract #514, JCO, 2022. 6. Cardoso F, <i>et al.</i> NEJM, 2016.
000 and	7. Krijgsman O, <i>et al.</i> NEJM, 2010. 7. Krijgsman O, <i>et al.</i> BCRT, 2012. 8. Ooi SL, <i>et al.</i> BCRT, 2011. 9. Iqbal J, <i>et al.</i> JAMA, 2015.
lies, full	SABCS 2022 Poster ID: PD9-08 Abstract ID: 1296438

This presentation is the intellectual property of the author/presenter. Contact them (brufskyam@upmc.edu and william.audeh@agendia.com) for permission to reprint and/or distribute.