

MammaPrint® and BluePrint® predict anthracycline chemosensitivity in patients with HR+HER2- early-stage breast cancer enrolled in FLEX

William Audeh^{1,2}, Nicole Chmielewski-Stivers¹, Harshini Ramaswamy¹, Andrea Menicucci¹, FLEX Investigators' Group

¹Medical Affairs, Agendia Inc., Irvine, CA; ²Cedars Sinai Medical Center, Los Angeles, CA

41st Miami Breast Cancer Conference® March 7-10, 2024, Poster # 36

Introduction

- HR+HER2-negative early-stage breast cancers often yield <10% pathologic Complete Response (pCR) rates to neoadjuvant chemotherapy (NCT).
- MammaPrint (MP), classifies patients as having an Ultra Low, Low, High 1, or High 2 Risk of distant recurrence and is a continuous predictor of pCR¹⁻³.
- NBRST, I-SPY 2, and FLEX study data demonstrate that MP and BluePrint (BP) molecular subtyping signatures may identify cohorts of patients with high pCR in response to NCT⁴⁻⁸.
- For patients eligible for NCT, there remains an unmet need to help inform whether anthracycline-based therapies, associated with debilitating acute toxicities and long-term cardiovascular risk⁹, should be considered over taxane + cyclophosphamide (TC) regimens.

Objective

Examine MammaPrint and BluePrint utility to predict pCR rates between standard of care neoadjuvant regimens:

TC (taxane and cyclophosphamide) vs AC-T/TAC (TC with anthracycline)

Methods

Study Cohort

- Patients enrolled in the ongoing prospective, observational FLEX Trial (NCT03053193) with HR+HER2-, MP High Risk tumors, treated with NCT, with pCR data were included.
- Patients were tested with MammaPrint, with or without BluePrint, and consented to clinically annotated full genome data collection.

Genomic Testing

MammaPrint	High 1 (H1)* Index Value 0.000 to -0.569	High 2 (H2) Index Value -0.570 to -1.000	
BluePrint ³	Luminal B-Type	Luminal B-Type	Basal-Type

* High 1 Basal-Type excluded from analysis due to low sample size (N = 2) **Statistics**

- Differences in clinical characteristics were assessed by Chi-Squared or Fisher's exact test.
- Differences in pCR were assessed by two-sided proportional z-test.
- P-values of 0.05 or less were considered significant.

Table 1. Clinical Characteristics

High 1*

High 2

		_			l .
	Luminal B (N=139)	Basal (N=34)	Luminal B (N=39)	P-value	
Age (Years)					
Mean (SD)	55 (± 13)	52 (± 13)	53 (± 13)	1	
Menopausal Status					
Post-	82 (63.1%)	21 (67.7%)	22 (61.1%)	0.46	
Pre-/Peri-	48 (36.9%)	10 (32.3%)	14 (38.9%)		
Race					
Asian or Pacific Islander	3 (2.3%)	0 (0%)	2 (5.4%)	0.71	
American Indian or Alaska Native	1 (0.8%)	0 (0%)	0 (0%)		
Black	21 (15.9%)	3 (9.4%)	6 (16.2%)		
Latin American/Hispanic	9 (6.8%)	0 (0%)	4 (10.8%)		
Mixed race	1 (0.8%)	0 (0%)	0 (0%)		
White	97 (73.5%)	29 (90.6%)	25 (67.6%)		
Tumor Stage					
T1	27 (26.0%)	7 (26.9%)	6 (25.0%)	0.44	
T2	52 (50.0%)	17 (65.4%)	13 (54.2%)		
Т3	20 (19.2%)	2 (7.7%)	2 (8.3%)		
T4	5 (4.8%)	0 (0%)	3 (12.5%)		
Lymph Node Status					
Negative	40 (39.6%)	16 (64.0%)	8 (34.8%)	0.04	
Positive	61 (60.4%)	9 (36.0%)	15 (65.2%)		
Lymph Node Stage					
N0	40 (39.6%)	16 (64.0%)	8 (34.8%)	0.21	
N1	52 (51.5%)	8 (32.0%)	14 (60.9%)		
N2	5 (5.0%)	0 (0%)	0 (0%)		
N3	4 (4.0%)	1 (4.0%)	1 (4.3%)		
Grade					
G1	9 (6.8%)	0 (0%)	1 (2.7%)	<0.001	
G2	83 (62.9%)	2 (6.5%)	13 (35.1%)		
G3	40 (30.3%)	29 (93.5%)	23 (62.2%)		
Neoadjuvant Chemo					
AC-T/TAC	100 (71.9%)	31 (91.2%)	32 (82.1%)	0.06	
тс	39 (28.1%)	3 (8.8%)	7 (17.9%)		
Data presented as n (%) unless inc	licated other	wise: Unknov	vn	

Data presented as n (%) unless indicated otherwise; Unknown values excluded; *High 1 Basal patients were excluded due to small sample size (N = 2)

Figure 1. MammaPrint High 1 and High 2 Risk Predicts Neoadjuvant Chemotherapy Response

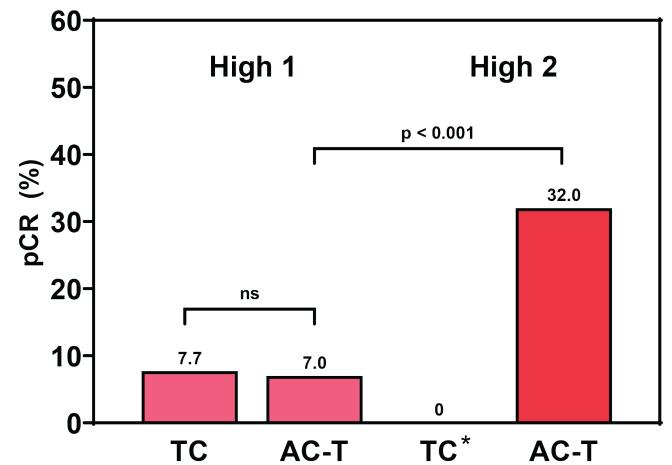
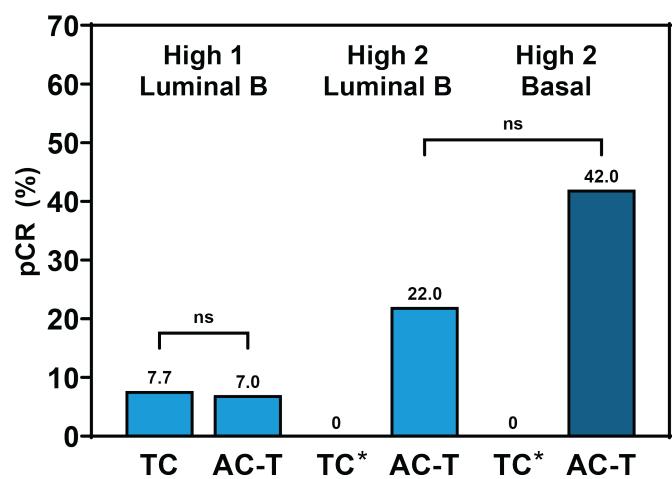



Figure 2. Neoadjuvant Chemotherapy Response based on BluePrint Subtypes in High Risk Tumors

pCR = pathological Complete Response; TC = taxane and cyclophosphamide; AC-T = TC and anthracycline, AC-T or TAC regimens; ns = not significant; * insufficient sample size/pCR events in TC treated groups for statistical comparison

Results

- MammaPrint classified 66% of HR+, HER2- breast cancers as H1 and 34% as H2 (Table 1).
 - Menopausal status, race, tumor stage, and lymph node status were comparable between patients with H1 and H2 tumors.
 - Although most (71%) H2 tumors were Grade 3, only 57% of all Grade 3 tumors were H2.
 - Most H1 tumors were Luminal B-Type, while similar proportions of H2 tumors were Basal-Type (47%) and Luminal B-Type (53%).
- Among H1 tumors, pCR rates to AC-T/TAC vs TC treatments were comparable (Figure 1).
 - In contrast, no H2 tumors (N = 10) achieved pCR to TC treatments, whereas AC-T/TAC treatment was significantly more effective for H2 compared to H1 (p < 0.001) tumors.
- Among BluePrint subtypes, H2 Basal-Type achieved the highest pCR rates with AC-T/TAC, although not significant when compared to H2 Luminal B-Type (**Figure 2**).

Conclusions

- MammaPrint and BluePrint genomic testing provides predictive utility for personalized neoadjuvant chemotherapy treatment planning.
- Patients with High 2 tumors were more likely to achieve a pCR to anthracycline-based neoadjuvant chemotherapy compared to High 1.
- Anthracycline does not appear to improve pCR rates for patients with High 1, Luminal B-Type tumors, when compared to taxane + cyclophosphamide neoadjuvant therapy, alone.
- In an effort to further examine the utility of MammaPrint for neoadjuvant treatment planning, the SWOG 2206 trial (NCT06058377) is currently enrolling and evaluating patients with MammaPrint High 2 tumors' response to neoadjuvant immunotherapy.

References: 1. Cardoso et al., N. Engl. J. Med., 2016; 2. Piccart et al., Lancet Oncol, 2021; 3. Whitworth et al., Annals of Surg Onc, 2022; 4. Van't Veer et al., EORTC-NCI-AACR, 2018; 5. Huppert et al., J. Clin. Oncol, 2022; 6. Pusztai et al., Cancer Cell, 2021; 7. Beitsch et al., ASCO 2023; 8. O'Shaughnessy et al., SABCS, 2023, 9. Cardinale et al., Front. Cardiovasc. Med., 2020