

The ImPrint immune signature identifies high risk early breast cancer patients who may benefit from PD1 checkpoint inhibition in I-SPY2

QL HC

AGENDIA **Quantum Leap**

Healthcare Collaborative

Kuilman MM¹, Barcaru A¹, Nota B¹, Wolf DM², Yau C², Delahaye LJMJ¹, Audeh MW¹, Brown-Swigart L², Hirst GL², Symmans WF³, Lu R⁴, I-SPY 2 Investigators², Liu MC⁵, Nanda R⁶, Esserman LJ², van 't Veer LJ², Glas AM^{1*} AND Mittempergher L^{1*}

¹Research and Development & Medical Affairs, Agendia NV, Amsterdam; ² Department of Surgery, University of San Francisco; ³Department of Pathology, University of Texas MD Anderson Cancer Center; ⁴Quantum Leap Healthcare Collaborative, San Francisco; ⁵Department of Surgery, Mayo Clinic, Rochester; ⁶Department of Medicine, University of Chicago

Background

- Remarkable increase of novel Immuno-Oncology drugs in many malignancies led to the need for biomarkers to identify who would benefit.
- Various predictive biomarkers have been developed but none have consistently predicted efficacy.
- I-SPY2 qualified several expression-based immune biology related signatures that predict response to PD1/PDL1 immune checkpoint inhibition $(ICI)^{1,2}$.
- We assessed whole transcriptome data of patients with high-risk early-breast cancer (EBC) who received ICI within the neoadjuvant biomarker-rich I-SPY2 trial (NCT01042379), aiming to migrate the I-SPY2 research findings into robust clinical grade signature to predict sensitivity to PD1/PDL1 ICI.

Data and Methods

- Whole transcriptome microarray data were available from pre-treatment EBC biopsies of 69 HER2- patients of the I-SPY2 Pembrolizumab (4 cycles) (Discovery set- Table1A) and 70 HER2- patients of the I-SPY 2 Durvalumab/Olaparib (Validation set- Table 1B) arms. All patients had a High-Risk 70-gene MammaPrint (MP)^{3,4} profile, were Luminalor Basal-type based on 80-gene BluePrint molecular subtyping profile ^{5,6}.
- Pathologic complete response (**pCR**) was defined as no residual invasive cancer in breast or nodes at the time of surgery.
- The most significant predictive genes for pCR (effect size >0.45) were identified by comparing pCR and **RD** (Residual Disease) groups in the Pembrolizumab arm by iteratively splitting the **Discovery set** in training and test, balancing for Hormonal Receptor (HR) status and using Leave one out cross validation for performance assessment
- Pathway analysis was performed with gene set enrichment analysis (GSEA) using Molecular Signatures Database/Hallmark gene sets (adjusted p-value ≤ 0.05).
- Prevalence analysis was performed on a set of 1463 patients enrolled in the I-SPY2 trial (849 HR+HER2-; 614 Triple Negative)

Table 1A				Table 1B			
Discovery set	pCR	RD	Total	Validation set	pCR	RD	Total
HR+ HER2-	12	28	40	HR+ HER2-	20	29	49
Triple Negative	19	10	29	Triple Negative	9	12	21
Total	31	38	69	Total	29	41	70

Figure 1. Heatmap of 53 ImPrint genes in Pembrolizumab discovery set (N=69). Distance based on correlation metric and average linkage are applied.

Under the Curve

The 53-gene signature ImPrint (Figure 1), predicts pCR to PD1 inhibition with 94% sensitivity and 84% specificity in all patients (Discovery set, Figure 2A). In Triple Negative, sensitivity and specificity are 100% and 70%, and in HR+HER2-83% and 89%, respectively. The Positive Predictive Value (PPV) is 77% in the HR+HER2- group. In the Validation set (Figure 2B), ImPrint predicts pCR to PDL1 inhibition with 76% sensitivity and 85% specificity in all patients, 89% sensitivity and 58% specificity in Triple Negative and 70% sensitivity and 97% specificity in HR+HER2-. Notably, the PPV is 93% for the HR+HER2- group. ImPrint prevalence analysis on 1463 EBC, shows that majority of Triple Negative EBC is Immune+ (n=438/614, 71%), however a clinically relevant subset of HR+HER2- is also Immune+ (n=213/849, 25%) (Figure 3). Over 90% of the ImPrint genes have known immune response related functions (including PD-L1 and PD-1, as well as immune predictive genes from I-SPY2²). GSEA indicates that ImPrint identifies a subset of immune active tumors (Immune+) with enrichment of different immune pathways, such as Interferon- α - and - γ response, known to play key roles in activation of cellular immunity stimulation of antitumor immune-response (Figure 4).

Figure 4. GSEA of ImPrint Immune+ vs. Immune- in the Discovery and Validation sets. In bold are highlighted immune-related pathways.

Conclusions and Future Directions

- ImPrint predicts pCR to PD1-PDL1 ICI with high sensitivity and specificity in both discovery and validation sets.
- Over 90% of the ImPrint genes have known immune response related functions (including genes that codify PD-L1 and PD-1)
- ImPrint identifies tumors with an immune active phenotype denoted by the enrichment of several immune-related pathways
- ImPrint appears very effective in identifying a subset of HR+HER2- patients who could benefit from immunotherapy.
- Prospective validation of ImPrint will be performed within the I-SPY 2.2. trial.

This presentation is the intellectual property of the author/presenter. Contact lorenza.mittempergher@agendia.com for permission to reprint and/or distribute.

ASCO

Figure 2. Receiving Operating Curves and pCR distribution for the Pembrolizumab Discovery set (left) and the Durvalumab/Olaparib Validation set (right). AUC=Area

Figure 3. Prevalence analysis of ImPrint (Immune+ vs. Immune-) in the ISPY2 trial high risk patients (n=1463).

References

- Danaher P et al, J Immun Ther Cancer, 2017
- DM, Yau C et al, Cancer Cell, 2022
- 3. Cardoso F et al, NEJM, 2016
- 4. Piccart M et al, Lancet Onc, 2021
- 5. Krijgsman O et al, BCRT, 2011
- 6. Mittempergher L et al, Transl Onc, 2020

