

Identification of transcriptional changes with MammaPrint and BluePrint in earlystage breast cancer after neoadjuvant chemotherapy

Alice P. Chung¹, Marissa Srour¹, Farnaz Dadmanesh¹, Sungjin Kim², Armando Giuliano¹, Jennifer Wei³, Yen Huynh³, Josien Haan⁴, Shiyu Wang³, Andrea Menicucci³, Patricia Dauer³ and William Audeh³ 1. Division of Surgical Oncology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA; 3. Agendia Inc., Irvine, CA; 4. Agendia NV, Amsterdam, Netherlands

Background

The use of neoadjuvant chemotherapy (NAC) in patients with early-stage breast cancer (EBC) increases the opportunity for genomic testing which can help predict treatment response and optimize outcomes.

MammaPrint (MP) classifies tumors as having a Low Risk (LR) or High Risk (HR) of distant recurrence^a. MP with BluePrint (**BP**), a molecular subtyping assay, categorize tumors as Luminal A (MP LR), Luminal B (MP HR), HER2, or Basal-Type^b.

Our recent analysis comparing matched pre- and post-NAC tumors found 25% of pre-NAC Luminal B tumors changed to Luminal A post-NAC, which corresponded with improved 5-year outcomes compared with patients who remained Luminal B post-NAC^c.

Here, we report differential gene expression (DGE) and pathway analyses in these matched tumors that may distinguish the different responses.

Methods

Patients: Among the 128 patients with EBC who received NAC at Cedars Sinai Medical Center between 2007-2016, 38 with residual disease (**RD**) had paired pre- and post-NAC tissues.

Molecular Classification: In patients with Luminal tumors, 8 were Luminal B pre- and post-NAC (HR/HR), and 7 were Luminal B pre-NAC but changed to Luminal A post-NAC (HR/LR).

Whole Transcriptome Analysis: Limma R for quantile used package was normalization DGE analyses. and Differentially expressed genes (**DEGs**) with < 0.05 false discovery rate and > 2-fold considered significant. change were pathway enrichment was Functional performed using Metascape.

Although post-NAC RD correlates with poor prognosis, even in Luminal tumors, these data suggest gene expression profiling may distinguish a subset with good prognosis. Using matched samples, we assessed the transcriptional differences in tumors that changed MP risk (HR/LR) with tumors that stayed MP HR post-NAC (HR/HR). Overall, HR/HR tumors had a larger transcriptional response with metastatic-related pathway enrichment. Given these patients with HR/HR tumors displayed worse outcomes^c, pathway changes may indicate resistance and patients may need additional therapy. Differential changes in immune cells between HR/HR and HR/LR tumors were also observed. The activated immune response in HR/LR tumors may be a biomarker for treatment response and improved outcome and will be the focus of further evaluation.

Results

Figure 4. Change in relative abundance of immune cells by immune deconvolution (xcell) following NAC in (A) HR/LR and (B) HR/HR Luminal breast cancers. Abundance of immune cells in pre-NAC (orange) and post-NAC (pink) samples are shown. Cell types with significant differences between pre- and post-NAC are in **bold**.

Conclusion

This presentation is the intellectual property of the author/presenter. Contact them (Alice.Chung@cshs.org and William.Audeh@agendia.com) for permission to reprint and/or distribute.

Figure 3. Functional enrichment analysis comparing post-NAC with pre-NAC tumors. The top 20 pathways for MammaPrint/BluePrint Luminal tumors (HR/LR and

	VEGFA-VEGFR2 signaling pathway
	Nuclear receptors meta-pathway
	Hormone response
	NABA CORE MATRISOME
	Regulation of cell adhesion
	Positive regulation of cell death
	Signaling by Receptor Tyrosine Kinases
	Negative regulation of cell population proliferation
	Enzyme-linked receptor protein signaling pathway
	Hemostasis
	Vasculature development
	Response to wounding
	Immune system development
	Regulation of proteolysis
	Supramolecular fiber organization
	Positive regulation of cellular component movement
	Regulation of actin filament-based process
	Adipogenesis
R	

Within HR/LR tumors, a DGE analysis identified 31 downregulated and 73 upregulated DEGs in post-NAC tissues relative to pre-NAC (Figure 1A). Interestingly, there was a more robust transcriptional change in HR/HR tumors, with 956 DEGs between postpre-NAC samples (281 and downregulated and 675 upregulated; Figure 1B).

Among the differentially expressed gene transcripts, 22 upregulated and downregulated transcripts are unique to HR/LR tumors. In contrast, 678 upregulated 298 and downregulated transcripts are unique to HR/HR tumors (Figure 2).

Functional enrichment analysis of post-NAC versus pre-NAC tumors revealed in cell cycle/proliferation changes pathways in HR/LR tumors, and enrichment of RHO and VEGF signaling, angiogenesis, and wound healing pathways in HR/HR tumors (Figure 3).

Notably, immune pathway enrichment was in both HR/LR and HR/HR groups, although the nature of enrichment differed. deconvolution Immune identified significant increases in activated myeloid dendritic cells (DC) and CD8+ T cells in HR/LR but not in HR/HR post-NAC tumors (Figure 4), suggestive of a host immune response.

References

a. Cardoso et al. NEJM, 2016. b. Krijgsman et al. BCRT, 2012. c. Chung et al. SABCS, 2021.

ASCO 2022, Poster # 585