# Molecular profiles of genomically High Risk ER+ HER2- breast cancer tumors classified as functionally Basal or Luminal B by the BluePrint



Joyce O'Shaughnessy<sup>1</sup>, Virginia G. Kaklamani<sup>2</sup>, Yuan Yuan<sup>3</sup>, Julie Barone<sup>4</sup>, Sami Diab<sup>5</sup>, Jennifer A. Crozier<sup>6</sup>, Pat W. Whitworth<sup>7</sup>, Karen L. Tedesco<sup>8</sup>, Robert Maganini<sup>9</sup>, Rakhshanda Layeequr Rahman<sup>10</sup>, Carlos A. Encarnacion<sup>11</sup>, Josien Haan<sup>12</sup>, Amy M. Truitt<sup>12</sup>, Andrea Menicucci<sup>12</sup>, William Audeh<sup>12</sup>, FLEX Investigators' Group Bartlett, IL; 10. Texas Tech University Health Sciences Center, Breast Center of Excellence, Amarillo, TX; 11. Texas Oncology-Waco, US Oncology, Waco, TX; 12. Medical Affairs, Agendia, Inc., Irvine, CA

1. Texas Oncology-Baylor Sammons Cancer Center, US Oncology, Dallas, TX; 2. University of Texas San Antonio, TX; 3. City of Hope National Medical Center, Duarte, CA; 4. Vail Health Shaw Regional Cancer Center, Edwards, CO; 5. Rocky Mountain Cancer Center, US Oncology, Aurora, CO; 6. Baptist MD Anderson Cancer Center, Jacksonville, FL; 7. Nashville Breast Center, Nashville, TN; 8. New York Oncology Hematology-Albany, US Oncology, Albany, NY; 9. AMITA Health, Saint Alexis Medical Center,

## BACKGROUND

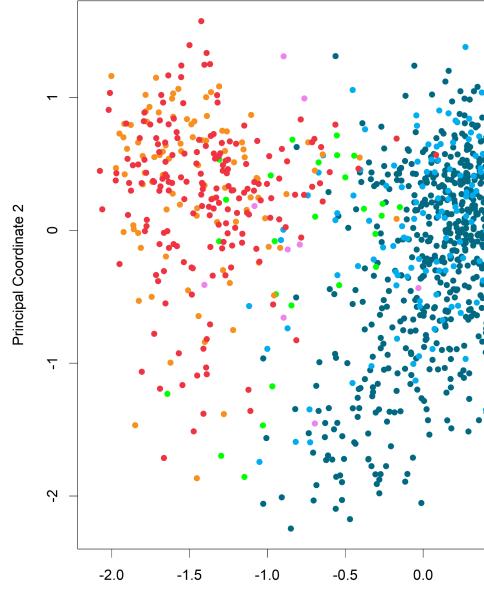
- The 80-gene signature (BluePrint/BP) classifies earlystage breast cancers based on functional molecular signaling pathways as Luminal, HER2, or Basal-type<sup>1</sup>.
- In the NBRST study, 13% of immunochemistry (IHC) defined ER+ HER2- cancers were reclassified as Basaltype by the BP assay (ER+ Basal). These tumors had worse prognosis but responded better to neoadjuvant chemotherapy compared to ER+ HER2- cancers classified as genomically Luminal-type<sup>2</sup>.
- The 70-gene risk of recurrence signature (MammaPrint/MP) further stratifies Luminal-type cancers into Low Risk Luminal A or High Risk (HR) Luminal B<sup>1</sup>.
- HR Luminal-type cancers can be further stratified into MP High 1 (H1) or MP High 2 (H2), and the I-SPY2 trial has shown higher pathologic complete response rates in ER+ cancers classified as H2.
- Here, we investigated the biological differences among ER+ Basal, ER- Basal, H1 Luminal B, and H2 Luminal B cancers by full transcriptome analysis.

## METHODS

FLEX Study: The FLEX Study (NCT03053193) is an ongoing, prospective study of stage I-III breast cancer patients that receive the MammaPrint 70-gene signature test with or without the BluePrint 80-gene signature test and consent to clinically annotated transcriptome data collection.

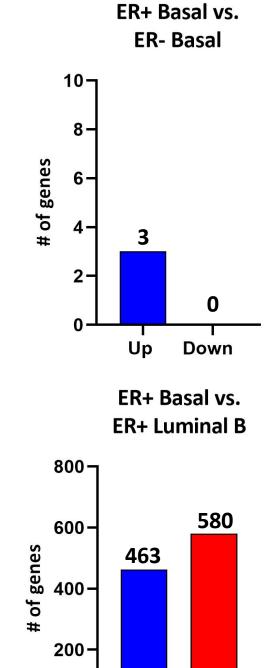
Patient Cohort: 1501 breast cancer samples with known IHC ER status were classified into subtypes by the MP and BP tests: 103 ER+ Basal, 210 ER- Basal and 1188 ER+ Luminal B (H1 n=1034, H2 n=154).

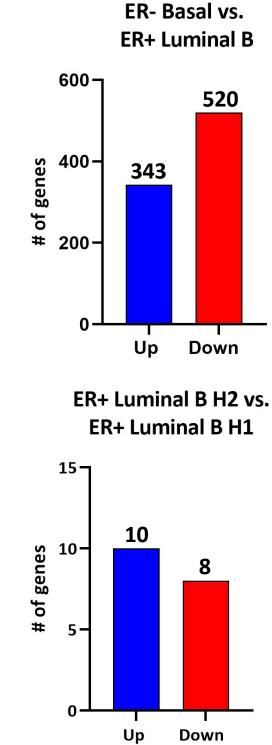
Gene Expression Analysis: Differentially expressed genes (DEGs) were detected using R package 'limma' and pathway analyses were performed with gene set enrichment analysis (GSEA). DEGs with a fold change >2 and FDR < 0.05 were considered significant.

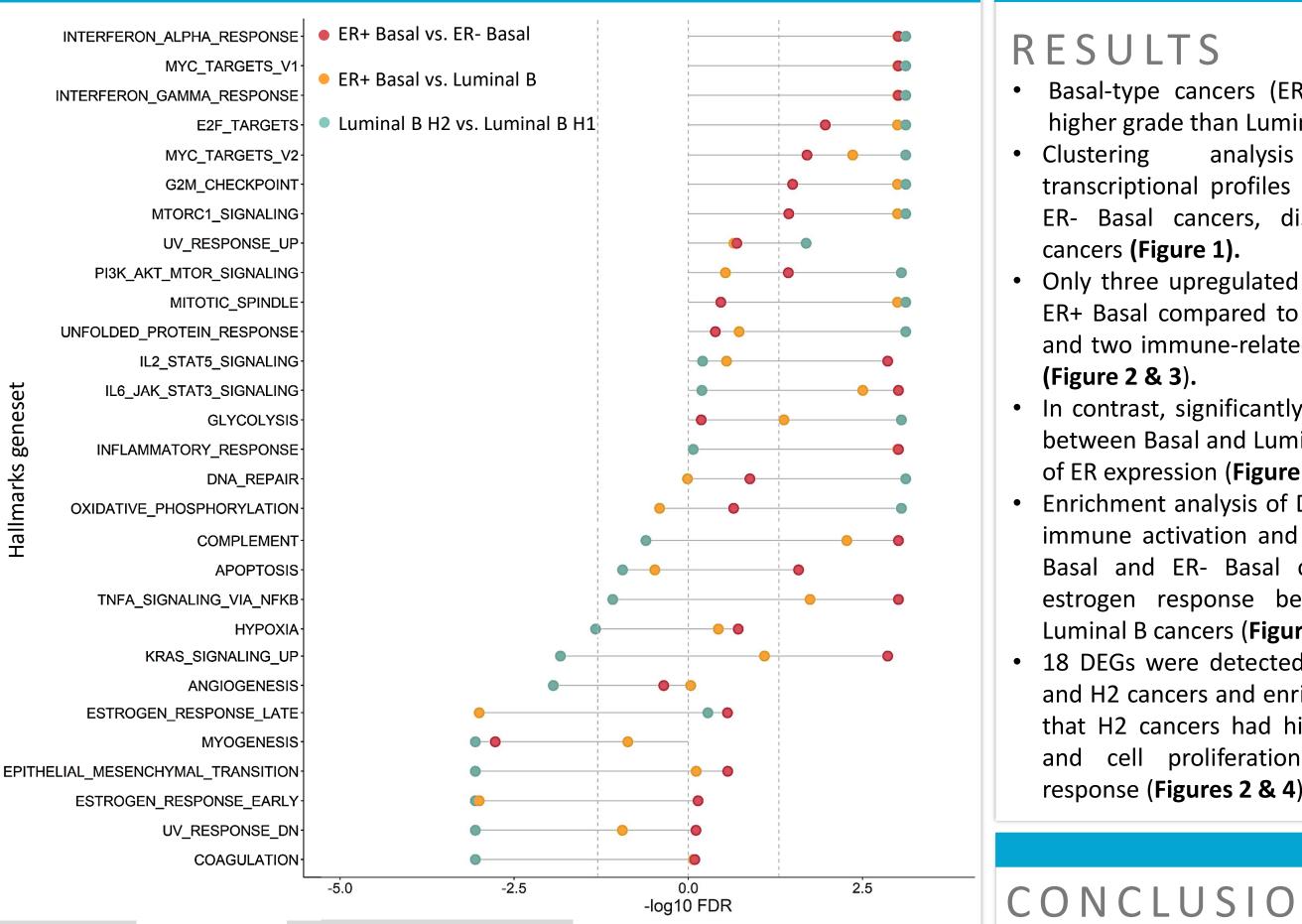

Statistical Analysis: Clinical factors were assessed by either the Chi-square or Fisher's exact tests; ANOVA or t test were used to analyze age.

### Table 1: Patient-Tumor clinical characteristics

| Table 1. Patient-Tumor chincal characteristics. |           |           |           |              |           |                  |              |
|-------------------------------------------------|-----------|-----------|-----------|--------------|-----------|------------------|--------------|
|                                                 |           |           |           |              | ER+       | ER+              |              |
|                                                 |           |           | ER+       |              | Luminal B | <b>Luminal B</b> |              |
|                                                 | ER- Basal | ER+ Basal | Luminal B |              | H1        | H2               |              |
|                                                 | (n = 128) | (n = 63)  | (n = 698) | Significance | (n = 615) | (n = 83)         | Significance |
| Mean Age                                        | 56.81     | 54.19     | 59.97     | p < 0.001    | 60.38     | 56.98            | p = 0.02     |
| Lymph                                           |           |           |           |              |           |                  |              |
| node                                            |           |           |           |              |           |                  |              |
| cN0                                             | 113 (73%) | 54 (86%)  | 523 (80%) | p = 0.13     | 482 (78%) | 55 (66%)         | p = 0.014    |
| <u>&gt;</u> cN1                                 | 41 (27%)  | 9 (14%)   | 141 (20%) |              | 133 (22%) | 28 (34%)         |              |
| Grade                                           |           |           |           |              |           |                  |              |
| G1                                              | 4 (3%)    | 2 (3%)    | 97 (15%)  | p < 0.001    | 95 (16%)  | 2 (2%)           | p < 0.0001   |
| G2                                              | 16 (14%)  | 10 (16%)  | 406 (61%) |              | 380 (65%) | 26 (32%)         |              |
| G3                                              | 98 (83%)  | 50 (81%)  | 163 (24%) |              | 110 (19%) | 53 (66%)         |              |
| T Stage                                         |           |           |           |              |           |                  |              |
| cT1                                             | 56 (44%)  | 30 (48%)  | 394 (56%) | p = 0.08     | 361 (59%) | 33 (40%)         | p = 0.005    |
| cT2                                             | 60 (47%)  | 29 (46%)  | 254 (38%) |              | 212 (34%) | 42 (51%)         |              |
| <u>&gt;</u> cT3                                 | 11 (9%)   | 4 (6%)    | 50 (6%)   |              | 42 (7%)   | 8 (9%)           |              |
| Ethnicity                                       |           |           |           |              |           |                  |              |
| White                                           | 74 (58%)  | 37 (59%)  | 505 (72%) | p = 0.001    | 458 (74%) | 47 (57%)         | p = 0.001    |
| AA                                              | 30 (23%)  | 12 (19%)  | 75 (11%)  |              | 57 (9%)   | 18 (22%)         |              |
| LA                                              | 14 (11%)  | 6(10%)    | 48 (7%)   |              | 43 (8%)   | 5 (6%)           |              |
| other                                           | 10 (8%)   | 8 (12%)   | 70 (10%)  |              | 57 (9%)   | 13 (15%)         |              |
| *unknowns excluded                              |           |           |           |              |           |                  |              |


AA = African American


LA = Latin American




Principal Coordinate 1

Figure 1: PCA analysis showing Luminal (blue) and Basal (ER+ = orange, ER- = red) samples explain the highest variance between the groups.







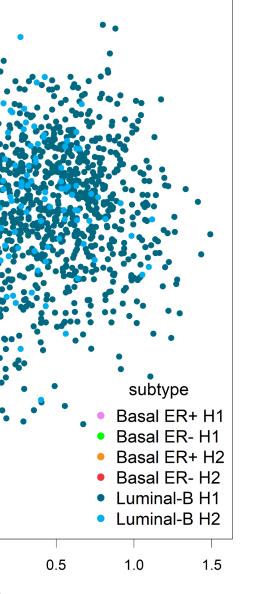



Figure 2: Number of differentially expressed genes between tumor subtypes.

Up Down

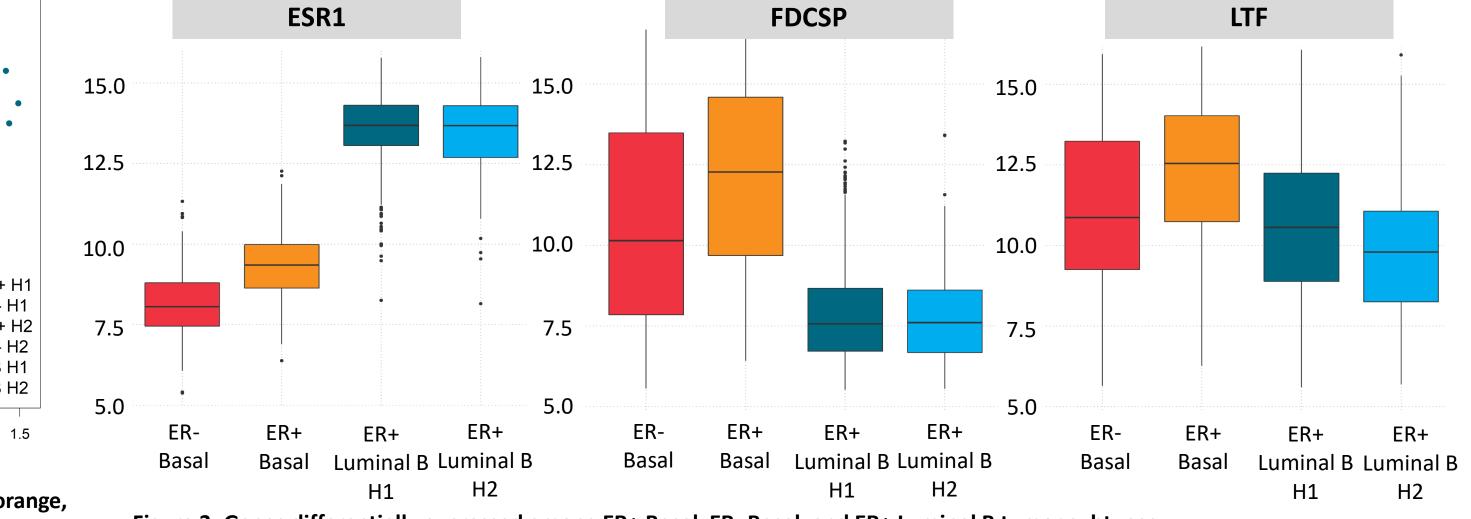
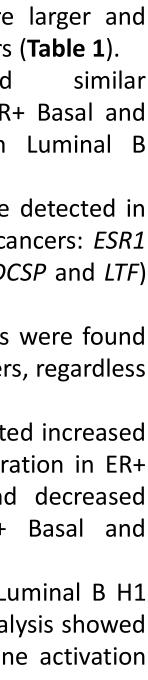
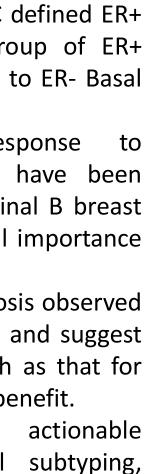


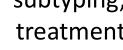

Figure 3: Genes differentially expressed among ER+ Basal, ER- Basal, and ER+ Luminal B tumor subtypes

Figure 4: Results from gene set enrichment analysis using Hallmark gene sets from Molecular signature database for ER+ Basal vs. ER- Basal (red). ER+ Basal vs. Luminal B (orange), and Luminal B H2 vs. Luminal B H1 (blue).

#### References


Krijgsman *et al.* 2012, Breast Cancer Res Treat


Groenendijk *et al.* 2019, npj **Breast Cancer** 


- Basal-type cancers (ER+/ER-) were larger and higher grade than Luminal B cancers (Table 1).
- analysis showed transcriptional profiles between ER+ Basal and ER- Basal cancers, distinct from Luminal B
- Only three upregulated genes were detected in ER+ Basal compared to ER- Basal cancers: ESR1 and two immune-related genes (FDCSP and LTF)
- In contrast, significantly more DEGs were found between Basal and Luminal B cancers, regardless of ER expression (Figure 2).
- Enrichment analysis of DEGs indicated increased immune activation and cell proliferation in ER+ Basal and ER- Basal cancers, and decreased estrogen response between ER+ Basal and Luminal B cancers (Figure 4).
- 18 DEGs were detected between Luminal B H1 and H2 cancers and enrichment analysis showed that H2 cancers had higher immune activation and cell proliferation and lower estrogen response (Figures 2 & 4).

### CONCLUSIONS

- Reclassification by BluePrint of IHC defined ER+ HER2- cancers identified a subgroup of ER+ cancers that are biologically closer to ER- Basal than Luminal-type cancers.
- Significant differences in response to neoadjuvant chemotherapy that have been seen between ER+ Basal and Luminal B breast cancers lend support to the clinical importance of these findings.
- These data explain the poor prognosis observed in patients with ER+ Basal cancers and suggest that optimized chemotherapy, such as that for triple negative cancer, might be of benefit.
- provides clinically BluePrint information beyond pathological which may guide neoadjuvant treatment recommendations.





